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INTRODUCTION 

The analysis of metals in complex matrices often requires 

separation of interfering elements. Numerous chemical and 

physical separation methods are at the disposal of the analyst 

but none is more versatile than liquid chromatography (1-3). 

Recently a scheme was devised for the systematic quantitative 

separation of 27 different metal ions in a single sample (4). 

Ion exchange chromatography is especially suited for 

separation of metal ions. Chemically stable exchange resins 

of reasonable purity are commercially available in a variety 

of mesh sizes. Column p-^paration is simple and a large body 

of data has been accumulated on the adsorbabilities of metals 

in various solvents (5-24). 

For ion exchange separation of heavy metals the most 

popular technique involves use of strongly basic exchange 

resins in chloridc media. In a recent comprehensive review 

of new analytical methods that involve ion exchange nearly one 

fourth of all methods reported make use of a resinous quater­

nary amine exchanger and chloride containing eluents (25). 

This was twice the number reported for any other system. This 

wide use reflects the versatility of hydrochloric acid as a 

solvent for metal ions. Largely because of the complexing 

power of chloride, a great number of metals form stable solu­

tions in this medium and display a range of adsorbabilities 

on anion exchange resins. 
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Unfortunately, inorganic liquid chromatography has been 

used by some only as a last resort in sample preparation be­

cause of long separation times, often 30 minutes per element. 

In separations where a large difference in adsorbabilities 

between sample and interferences is not possible, the time of 

analysis is further increased because of the necessity of 

using synthetic samples to optimize resolution for the partic­

ular sample size, resin, and column dimensions employed. 

Recent developments in organic liquid chromatography have 

enabled a substantial decrease in the time required for opti­

mized separations cf mixtures of organic compounds (26). 

Using pressure to force eluents through small diameter columns 

of fine mesh resin, thus minimizing flow inequalities while 

increasing the rate of diffusion limited column processes in 

order to maintain resolution, separations often have been 

speeded to one compound ner minute. Continuous monitoring of 

refractive index, conductivity, or ultraviolet absorption of 

column effluents not only allows optimization of elucion con­

ditions but also quantitative estimation of the constituents 

separated eliminating the need for a subsequent analysis step. 

In an effort to apply these techniques in inorganic 

analysis, a recent paper describes a rapid and selective 

method for iron(I II) using a liquid chromatograph and UV de­

tection [27). Iron(III) is sorbed to a small column of anion 

exchange resin from 6M hydrochloric acid. This allows con­
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centration of the iron and separation from many interfering 

elements. Iron(III) is then stripped in more dilute acid and 

the peak height (in absorbance] of the eluted iron chloro-

complex recorded. The amount of iron in the sample is obtained 

from a linear calibration plot which is constant with time. 

The dual selectivity afforded by anion exchange and selection 

of detection wavelength renders a method nearly specific for 

ironCIII). 

This technique, arising from the simple combination of 

anion exchange chromatography and spectrophotometry, would 

seem applicable to a large number of metal determinations. By 

simply changing hydrochloric acid concentration, many metal 

ions first can be strongly sorbed to a bed of anion exchange 

resin and then selectively eluted (1,3,5). On the other hand, 

hydrochloric acid has proven a useful reagent for the spectro-

photometric determination of a number of elements (28,29). 

Herein is described a more comprehensive investigation of 

the use of forced-flow anion exchange chromatography in the 

determination of metals in hydrochloric acid. The chromato-

graph previously described is improved to enable better sensi­

tivity, greater resistance to corrosion and larger pressure 

capabilities (27) . The scope of ultraviolet detection of metal 

chloro-complexes is investigated. Optimization of selectivity 

and sensitivity by proper choice of eluent composition and 

wavelength of detection is illustrated in a method for the 

rapid determination of lead(II). The problem of rapidly 
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eluting and separating metal ions not desorbable in hydro­

chloric acid alone is overcome by using a gradient mixture of 

hydrochloric and perchloric acids. Finally, the separation 

and quantitative determination of a mixture of several metals 

is demonstrated. 
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THE CHROMATOGRAPH 

Although much commercially available equipment has been 

developed to meet the growing demand for high-speed separation 

of organic materials, little is suitable for use with the cor­

rosive eluents employed in inorganic analyses. It was there­

fore necessary to design and construct a chromatograph with 

the corrosion resistance, rapid eluent change capability and 

variable detection needed for determination of metals. Opera­

tionally similar to the instrument used for determination of 

iron(III), the chromatograph has been modified as shown in 

Figure 1 (27). 

Design 

Helium is used to force eluents from heavy walled, one-

gallon polyethylene bottles and is regulated from 0-55 p,s.i.g. 

using a Harris Model No. 92-50 regulator. The tested safety 

factor is 3.6. Gas pressure is applied to the gas pressurisa­

tion manifold, eluent tanks, pneumatic actuation manifold and 

sample injection valve through 0.25-in. Dacron pressure tubing. 

A stainless steel reservoir (capacity 500 ml) is installed 

between the regulator and pressurisation manifold. This 

allows occasional purging of the manifold with water and ace­

tone to inhibit corrosion and prevent eluent contamination. 

Pressure is applied to the eluent tanks through specially 

machined Kel-F fittings attached to the Teflon cap as shown in 

Figure 2. Liquid escapes through the cap which acts as a 
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Figure 1. Schematic diagram of liquid chromatograph 
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coupling for the interior and exterior 0.031-in. i.d. Teflon 

tubing. The eluent bottles are encased in 6-in. iron pipe 

welded to a 0.25-in. iron base plate. A circular metal plate 

with a hole for the neck holds the bottle firmly in place. 

Pressurisation of the actuation manifold, which consists 

of four Hoke No. 1511M2B snap valves used to pressurize two 

PA-87 5-K actuators, is accomplished using compressed air at 

90 p.s.i.g. 

The valves, actuators, columns, tube-end fittings and 

connecting tubing used in eluent manipulation were either 

obtained from Chromatronix, Inc. or were specially designed to 

adapt to or replace same. The eluent tanks are connected to 

five "Cheminert" CAV-2031-K valves for eluent selection. These 

are in turn connected to a six port union machined from a 

single Kel-F block. A CAV-3031-K three way valve is used to 

connect the union with either the sample injection valve or 

by-pass loop. The by-pass loop, the other end of which is 

connected to a Kel-F tee between the detector and the flow 

meter, is used for purging air from the selection manifold 

and flow meter. The volume between eluent selection valves 

and column is minimized to allow rapid change of eluents with 

negligible mixing. 

The SV-8081-K sample valve is used to inject reproducibly 

samples as small as 40 ul. Sample volume depends on the length 

of the sample loop installed. Samples as large as 10 ml can be 

easily accommodated. In the "Fill loop" position eluent is 
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allowed to flow directly through the valve and into the analyt­

ical column. This, at the same time, allows filling of the 

sample loop using a syringe. When the valve is thrown to the 

"Inject" position, the eluent is forced through the sample 

loop sweeping the sample into the column. 

The chromatograph is designed to accept any Chromatronix 

column; however, 6.35-mm i.d. columns were found most useful 

for the work described. The column outlet is connected to the 

inlet of a 1.00-cm path length z-configuration flow-through 

cell. The cell, as shown in Figure 3, is mounted immediately 

adjacent to the phototube compartment in a Coleman Hitachi 

Model 101 UV-visible spectrophotometer. It is constructed of 

a Kel-F body with opaque Teflon caps holding 1-mm quartz win­

dows. The cell has an aperture diameter of 2 mm, and an 

internal volume of only 32 yl. This design minimizes loss of 

resolution due to mixing but necessitates amplification of 

spectrophotometer output. This is accomplished by installing 

a Kaylab Model 202B microvoItmeter between spectrophotometer 

and recorder. The Model SRLG recorder was obtained from E. H. 

Sargent and Company and is capable of linear (transmittance) 

or logarithmic (absorbance) display. The recorder is equipped 

with a Disc Instruments, Inc. Model 204DM integrator. An 

event marker was constructed by connecting a 1000 ohm resistor 

in series with a tap key across the recorder input terminals. 

The effluent passes from the detector through a Rogers 

Gilmont Instruments, Inc., catalog No. 3201, size No. 1 flow-
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meter and then into a 10-ml graduated effluent collector. The 

latter is used for calibration of the flowmeter and determina­

tion of small retention volumes. Below the collector the 

effluent, along with waste from the sample valve, is drained 

into an effluent neutralization tank. This tank contains a 

bed of crushed limestone one foot deep and is capable of in­

creasing effluent pH up to five units. 

The chromatograph is thus constructed so that only Kel-F, 

polyethylene. Teflon and glass contact the liquid enabling use 

of a wide variety of solvents. 

Operational Notes 

Unlike chromatographs which operate at constant flow rate 

using pumps to supply the pressure necessary to maintain that 

flow rate, this chromatograph operates at constant pressure. 

Experience has proven certain procedures helpful in operation 

of this type of instrument. 

It is often necessary to determine the relationship 

between flowmeter reading and flow rate for the eluent(s) 

employed. This is best done by calculation of a pair of con­

stants peculiar to a particular eluent and the particular flow 

meter. The relationship between flow rate (F) and flowmeter 

scale reading (S) can be expressed as follows: 

F = AS2 + BS 

where A and B are constants dependent on the viscosity and 

density of the liquid and the dimensions of the meter. By 
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careful determination of two flow rates (timing collection of 

at least 5 ml of eluent) which correspond to flowmeter read­

ings at approximately 80% and 35% full scale, simultaneous 

equations can be solved for A and B. Once A and B are known 

the scale reading corresponding to a particular flow rate can 

be calculated. It is also worthy of note that in plotting 

molarity of hydrochloric acid versus the flowmeter scale read­

ing corresponding to 1.00 ml/min, a straight line is obtained 

from water to lOM hydrochloric acid. This allows prediction 

of the scale readings corresponding to a given flow rate for 

all concentrations of hydrochloric acid from two sets of flow 

meter constants or only four experimentally determined flow 

rates. 

In separation of metal ions it is often necessary to 

employ large changes in eluent composition. When operating 

at constant pressure, this usually results in a change of flow 

rate. This change can arise from shrinking or swelling of the 

resin, which alters column flow resistance, or more likely 

from a change in eluent viscosity. This, however, has been 

found to cause no problem with reproducibility of chromato­

graphic data. Even though applied pressure is directly pro­

portional to the flow rate of a given eluent, attempts to 

manipulate pressure to maintain constant flow rate on changing 

eluents are infeasible because of difficulty in rapid or pre­

cise setting of the regulator. It is best to set the regulator 

to give a desired flow rate in the first eluent used in the 
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separation and hold pressure constant adjusting when necessary 

between separations. In doing so it is important to appreci­

ate the flow resistance of the sample loop, setting the regu­

lator with the sample valve in the "Inject" position. 

Another problem arising with constant pressure applica­

tions is a change in the column flow resistance caused by 

incomplete removal of fine resin particles before packing the 

column. This manifests itself in a gradual increase in the 

pressure necessary to maintain a constant flow rate because 

of clogging of the filter disc at the column exit. If this is 

the case, reversal of the column will result in a flow rate 

increase as some of these fine particles dislodge from the 

clogged disc. All fines can be removed from these discs by 

boiling in a mixture of concentrated nitric and perchloric 

acids. The ground resins thus far tested have all caused 

eventual clogging despite repeated flotation of fine resin 

particles. Bead type resins, on the other hand, were used for 

extended periods of time with no detectable change in column 

pressure drop. It should be noted that when using identical 

columns, applied pressures, and resin mesh sizes the flow rate 

is much greater with spherical resin beads than with ground 

resin. To minimize particle size and maintain reproducible 

flow rates, spherical resin beads should be used whenever 

possible. 

Problems with removal of air from the flowmeter and 

eluent manifold have been solved by installation of the three 
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way by-pass valve. This allows the pressurized eluent to by­

pass the column and detector (and resulting pressure drop) 

causing an increase in flow rate and forcing trapped air from 

the system. Entrapment of air in changing columns is best 

avoided by checking for bubbles in the column leads or con­

necting tubing to the detector and sample injection valve. 

This is accomplished by using excess solvent in packing the 

column so that upon insertion of the outlet plunger solvent is 

forced to escape through both column inlet and outlet. The 

outlet is then capped and the inlet is connected to the sample 

injection valve with a stream of water flowing through the 

chromatograph. This ensures that air will be forced from the 

couplings as the tube ends are joined. Next, the outlet is 

uncapped and connected to the detector again with water flow­

ing . 

Devpite these efforts air sometimes collects in the flow-

through cell. Often air will pass through the cell if it is 

mounted with the outlet at the top. If not, forcing a rapid 

stream of solvent through the detector cell with a syringe 

will dislodge any remaining air. Air trapped in the detector 

will cause erratic response sensitive to flow rate. It may 

appear as an absorbance increase in the form of sharp erratic 

peaks or as a constant baseline shift. Before disassembly of 

the instrument the possibility of air should always be checked. 

Finally, it should be mentioned that when operating in 
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the ultraviolet portion of the spectrum where amplification 

of spectrophotometer output is necessary, the best signal to 

noise ratio is obtained using low voltage (high gain] ranges 

on the microvoltmeter and the highest voltage range on the 

recorder. 
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SP1-;CTR0PI!0T0METRIC DETECTION 

Although methods have been reported for continuous moni­

toring of column effluents in the chromatographic separation 

of metal ions, the use of ultraviolet absorption detectors has 

been largely overlooked. However, this technique has proven 

most useful in organic liquid chromatography (26). Because of 

the great number of compounds detectable and the insensitivity 

of these detectors to changes in flow rate and temperature, 

this method of detection is by far most popular in high speed 

organic analysis. Signal attenuation is possible and detec­

tors are available with sensitivities of 0.005 absorbance 

units full scale with + 1% noise. 

To better determine the number of metal ions that can be 

detected in a similar fashion, the UV absorption spectra of 

70 metals, dissolved in 6M hydrochloric acid, were obtained. 

Uver half of these ions display molar absorptivitics greater 

than 100 in the region from 400 nm to the cutoff for hydro­

chloric acid at 210 nm. In contrast to the broad absorption 

of organic compounds in this region, the spectral features of 

these ions are in general sharp, providing for selectivity in 

choice of detection wavelength. Good sensitivity is promised 

for some elements with molar absorptivities in excess of 

10 ,000. 
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Experimental 

Apparatus. A Gary Model 14 Serial 19 recording spectro­

photometer with l.OQ-cm cells was used to obtain the spectra 

of the metal ions studied. 

Reagents. Metal solutions were prepared by dissolving 

oxides, chlorides, or high purity metals in hydrochloric acid. 

The solutions were transferred to a tared container and di­

luted to weight. Special procedures were used to obtain solu­

tions of a few ions. Arsenic(III) and germanium(IV) were 

prepared by first dissolving the appropriate oxides in a solu­

tion of sodium hydroxide before addition of hydrochloric acid. 

Antimony(V) oxide was dissolved in concentrated acid before 

dilution. Calcium carbonate, thorium nitrate, and uranyl 

acetate were converted to the chloride salts by heating to 

dryness in concentrated hydrochloric acid. Iron(III) and 

rhenium(VII) were prepared from the metals by treatment with 

a mixture of hydrogen peroxide and acid. Titanium(III) was 

prepared by dissolving the metal in hydrochloric acid. Titan-

ium(IV) was prepared from titanium(III) by oxidation with 

peroxide and subsequent destruction of the peroxo-complex with 

strong acid and heat. Spectral studies show at least 99% con­

version of oxidation states. Vanadium(IV) was prepared by 

reduction of vanadium(V) in ethanolic hydrochloric acid. 

Solutions of chromium(VI), silver(I), and vanadium(V) 

were prepared immediately before obtaining their spectra as 
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these ions are reduced in this medium. 

All chemicals were reagent grade except for the high 

purity lanthanide oxides obtained from the Ames Laboratory. 

The metals dissolved were at least 99.99% pure. For use in 

this survey weighings based on formula weights were assumed 

absolute; no independent standardization of solutions was 

attempted. All spectra were recorded against a 6M hydro­

chloric acid blank. 

Results and Discussion 

The spectra of 56 metal ions in 6M hydrochloric acid are 

shown in Figures 4-12. Table I gives a summary of the ions 

examined and their maximum molar absorptivities in the ultra­

violet. Examination of these data demonstrates the versatil­

ity of this method of detecting heavy metals in chloride bear­

ing eluents. Monitoring at 225 nm allows detection of a large 

number of metals. Although few metal complexes display maxima 

at this wavelength, all show at least shoulder absorption. 

Even detection of arsenic(II I), cadmium(II), chromium(III) , 

europiumCIII) , indium(III), manganese(I I], nickel(I I), rhenium 

(VII), titanium(III), titanium(IV), vanadium(V), and zircon­

ium^ IV) which have maxima below the hydrochloric acid cutoff, 

is possible at 225 nm. Other ions including antimony(V), 

antimony(I II), bismuth(111) , cerium(III), chromium(VI), gold 

(HI), lead(II), mercury (I I), pal ladium ( II ) , platinum ( IV) , 

rhodium(111) , silver(I), thallium(111) , tin(II), tin(IV) and 
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terbium(111) display one or more sharp maxima in the UV 

enabling some degree of selectivity by careful selection of 

wavelength. Finally, a group of metal ions including copper 

(II), iron(III), molybdenum(VI] , ruthenium(111 ) , and uranium 

(VI) absorb throughout this region. These ions have moderate 

to strong absorption and are likely to interfere with detec­

tion. Separation from this group is, therefore, a necessary 

prerequisite for spectrophctometric determination of a given 

metal. 
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Figure 4. Spectra of antimony(V), antimonyClII}, arsenic(I II), 
and bismuth(111) in 6M hydrochloric acid 

_ 40 ppm Sb(V) , 

_ _ 1 ppm As(III], 

5 ppm Sb (I II) , 

3 ppm Bi(III) 
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Figure 5 Spectra of cadmium(11} , cerium(III), chromium(III) , 
and chromium(VI) in 6M hydrochloric acid 

_ 100 ppm Cd(II), 

_ 5 ppm Cr (I II) , 

100 ppm Ce (111) , 

8 ppm Cr(VI) 
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Figure 6. Spectra of cobalt(II], copper(I I], europium(111), 
and gold(III] in 6M hydrochloric acid 

_ 100 ppm Co(II] , 

100 ppm Eu (I IIJ , 

10 ppm Cu ( 11) , 

5 ppm Au(III] 
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Figure 7. Spectra of indium(III), iron(III), lead(II), and 
manganese(II) in 6M hydrochloric acid 

50 ppm InCIII] , 5 ppm Fe(III), 

10 ppm Pb(II) , 100 ppm Mn(II) 
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Figure 8. Spectra of mercury(II), molybdenum(VI), nickel(II), 
and palladium(II) in 6M hydrochloric acid 

5 ppm Hg(II), 10 ppm Mo (VI), 

_ 150 ppm Ni (I I) , 1 ppm Pd(II) 
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Figure 9. Spectra of platinum(IV), rhenium(VI I) , rhodium 
(III), and ruthenium(IV) in 6M hydrochloric acid 

5 ppm Pt(IV) , 

_ _ _ _ 5 ppm Rh(111) , 

5 ppm Re(VII), 

4 ppm Ru(IV) 
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Figure 10. Spectra of silver(I), terbiuni(III) , thallium(111) , 
and tin(IV) in 6M hydrochloric acid 

2 ppm Ag(I), 100 ppm Tb(III), 

_ _ _ _ 10 ppm Tl(III), 10 ppm Sn(IVj 
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Figure 11. Spectra of tin(II), titanium(111) , titanium(IV) , 
and uranium(VI) in 6M hydrochloric acid 

_ 5 ppm Sn(II) , 

20 ppm Ti(IV) , 

20 ppm Ti (III) , 

50 ppm U (VI) 
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Figure 12. Spectra of vanadium(V), vanadium(IV), and 
zirconium(IV) in 6M hydrochloric acid; and the 
cutoff for 6M hydrochloric acid versus water 
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Table I. Maximum Ultraviolet Molar Absorptivities for Metal 
Ions in 6M HCl 

A1(I I) AuCIII] 33,000 Rb(I) N 

Sb(I I) 25,000 HfCIII) ^50 Ru(IV) 15,000 

Sb(V 6 ,300 HoClII) N Sm(III) N 

As(I I) 12,000 In(III) 1,800 Sc(III) N 

As (V '^>24 Fe(III) 6,300 Ag(I) 17,000 

Ba(I ) N La(III) N Na(I) N 

BeCi ) N Pb(II) 10,000 Sr(II) N 

Bi(I I) 47,000 LiCI) N Ta I 

B(II ) N LuCIII) N Tb(III) 270 

CdCl ) 400 Mg(II) N TICIII) 14,000 

Ca(I ) N Mn(II) 260 ThCIV) N 

Ce(I I) 700 Hg(II) 28,000 TmClII) N 

CsCl N Mo(VI) 5,200 SnCII) 9,800 

CrCi I) 5,000 NdCIII) N Sn(IV) 11,000 

CrCV ) 4,250 NiCII) 260 Ti(III) 1,100 

Co(I ) 310 Nb ib Ti(IV) 1,000 

CuCI ) 3,100 Pd(II) 54,000 W I 

DyCI I) N P(V) N U(VI) 3,300 

Er (I I} S G ju,uuu V(iv) yuu 

EuCI I) 250 KCI] N V(V) 3,200 

Gd(I I) N PrCIII] ~52 YbCIII) N 

GaCI I) N Re(VII) 13,000 Y(III) N 

GeCIV) N Rh(III) 15,000 ZnClI) N 

Zr(IV) 320 

^No absorption at 100 ppm. 

^Insoluble 
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i)I:THRMlNAT10N OF LEAD 

The literature abounds with methods for the determination 

of lead. This reflects the long-standing interest in the 

development of more rapid and selective methods for this ele­

ment in a great variety of matrices. In general these methods 

involve a separation step in which lead is removed from inter­

ferences and concentrated. Solvent extraction using sodium 

diethyIdithiocarbamate or dithizone followed by photometric 

determination of the resulting lead complex in the organic 

phase has proven sensitive and selective (30-32). However, 

extraction methods often require addition of a number of re­

agents which require painstaking purification. The high pH 

values necessary for selectivity often precludes analysis of 

samples high in metal content and can lead to reagent insta­

bility. Ion exchange methods have enabled separation of lead 

X X wil l W J. Uii ,  <X<XliL _L LZlil ,  i^ilCLX^XCt. iUy M ilU. V, i l  

with extraction techniques, as well as from a large number of 

other metals (1). Using strong-base anion exchange resin, 

separation from at least thirty-nine ions can be effected in 

hydrochloric acid media (5). This is the basis for several 

methods utilizing subsequent polarographic, spectrophotometric, 

and spectroscopic determinations (33-36]. Again much sample 

manipulation is involved, consuming time and sacrificing 

accuracy. 

This section describes application of forced-flow anion 
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exchange chromatography to the determination of lead in com­

plex matrices. In a manner similar to that used for iron(III), 

lead(II) is sorbed to an anion exchange column from dilute 

hydrochloric acid and separated from most matrix elements. It 

is then eluted with more concentrated acid and estimated spec-

trophotometrically from the height of its elution peak. The 

method is rapid and nearly specific; accuracy compares favor­

ably with other methods for small amounts of lead. 

Experimental 

Apparatus. The chromatograph was as previously described. 

Reagents. Dowex 1-X8 , 200-400 mesh, Bio-Rad Laboratories, 

capacity 3.2 meq/g of dry resin was used for the analytical 

separations. The resin was washed with methanol, concentrated 

hydrochloric acid, dilute hydrochloric acid and finally ace­

tone prior to air drying. The beads were then immediately 

sieved isolating the 250-325 fraction. Extreme fines not 

separated after sieving were removed by methanol flotation. 

The resins used in the determination of HETP values, 

Amberlite IR.'\-900 and IRA-400 and Amberlyst A-26 were obtained 

from Rohm and Haas. Dowex 1-X8 20-50 mesh, from J. T. Baker 

Chemical Company was used. After washing in methanol the 

resins were subsequently washed in water, 0.5M hydrochloric 

acid, and again in water. The excess moisture was removed 

using paper towels prior to grinding to the desired water 

moist mesh size. The gel-type resins Amberlite IRA-400 and 
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Dowex 1-X8 were ground in a Model 4-E Quaker City Mill. The 

macroreticular resins, IRA-900 and A-26 fouled the mill and 

were hand ground using a mortar and pestle. The resins were 

then repeatedly sieved retaining the respective 150-200 mesh 

fractions. Again extreme fines were removed by methanol flo­

tation. 

The resin used in packing the analytical column was dried 

prior to weighing. The beads, prepared as described above, 

were again washed with acetone and air dried. The resin was 

then stored in a desiccator under vacuum over anhydrous cal­

cium sulfate for at least 24 hr before weighing. 

Samples. The alloys analyzed were standard reference 

materials obtained from the National Bureau of Standards. The 

samples were thoroughly mixed before weighing. Each weighed 

sample was then transferred to an Erlenmeyer flask and covered 

with 3G u hydrogen peroxide solution. A small amount of concen­

trated hydrochloric acid was then added (1-3 ml) and a watch 

glass immediately placed on the flask. The samples rapidly 

dissolved without heating. Excess hydrogen peroxide was 

driven off by heating to near dryness. A measured amount of 

concentrated hydrochloric acid was then added such that, upon 

rinsing and subsequent dilution with water into a volumetric 

flask, the solution was made to 0.5M HCl. Chemicals employed 

were reagent grade. It was necessary to analyze Standard 

Sample 54D (Tin-Base Bearing Metal) soon after dilution to 
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prevent hydrolysis. 

Reagent Grade lead; assay 100.0%, as obtained from J. T. 

Baker Chemical Company, was used to obtain the analytical cal­

ibration plot. The lead was dissolved using the same proce­

dure used for the reference materials. 

All solutions and eluents were prepared from reagent 

grade hydrochloric acid and distilled, deionized water. 

Column Preparation. In all cases a Chromatronix Model 

LC-6M-13 column (6.35 mm i.d.) was used. Two outlet plungers 

were employed to obtain the bed height desired for the lead 

analyses. The analytical column was prepared by adding 1.000 

g resin in a thick aqueous slurry to a column with one plunger 

in place. While the resin settled flow was maintained by 

applying suction at the column outlet with a syringe. After 

settling, the bed was compressed as the other plunger was 

inserted. The column was then installed in the chromatograph 

and the flow reversed followed again by compression at both 

ends. This process of reversing the column, forcing a rapid 

flow of water, and compressing was continued until no further 

shrinkage was obtained. This yielded a bed length of 7.25 cm. 

The columns used in obtaining plate height data were 

packed in similar fashion. Resin was added to yield a bed 

length of approximately 10 cm. This column packing technique 

should only be employed with short columns to prevent nonuni-

formity in bed density. 
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Procedures. For the analysis of lead in alloys the 

standard reference materials, after dissolution as described, 

were diluted with 0.5M HCl to a concentration of from 0.4 to 

40 ug Pb/ml (for optimum precision 10 to 30 ug Pb/ml). The 

pressure was adjusted to give a flow rate in sorbing eluent 

C0.5M HCl) of 3.0 ml/min with the sample valve in the "Inject" 

position and the 7.25-cm column of Dowex 1-X8 in place. The 

valve was returned and the 0.969 ml sample loop was filled 

using a 3-ml syringe to insure adequate purging of any pre­

vious sample. The detector was set at 270 nm. After allowing 

2 min for column pre-equilibration the sample was injected. 

After 1 min the eluent was switched from 0.5M HCl to 8.OM HCl. 

During this first minute most of the nonsorbing matrix was 

removed. The elution with 8.OM HCl was continued until 6 min 

after injection, during which time the remainder of the matrix 

was removed followed by elution of lead. The eluent was then 

changed to 0.5M HCl to prepare the column for the next sample. 

The recorded peak height [in absorbance) was directly propor­

tional to the lead content in the sample. For optimum accuracy 

a calibration curve was constructed by running standard solu­

tions alternately with unknown samples using the same procedure. 

To analyze for extractable lead in glazed pottery the unit 

was first washed with detergent and rinsed thoroughly with dis­

tilled water. The unit was then dried and filled to 75% capac­

ity with 4% acetic acid. The unit was covered with a watch 

glass and allowed to stand 24 hr at room temperature. The 
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sample was then thoroughly mixed and a 25-ml aliquot taken. 

The aliquot was taken to near dryness in a 250-ml Erlenmeyer 

flask. Two drops of concentrated hydrochloric acid were added 

and the sample taken to dryness but not baked. The sample was 

diluted to 25 ml with 0.5M HCl and analyzed using the same 

elution sequence as was used for the alloys. 

Results and Discussion 

Choice of Method. This method takes advantage of two 

noteworthy properties of lead in solutions of hydrochloric 

acid to achieve exceptional selectivity and good sensitivity. 

Lead displays strong ultraviolet absorption at 272 nm having 

a molar absorptivity of 15,500 in 8M HCl. This peak is sharp 

with its maximum unshifted with small changes in acid concen­

tration, as is shown in Figure 15. Although 37 of the 70 

metal ions surveyed display sufficient ultraviolet absorption 

in hydrochloric acid to be detected, few have an appreciable 

molar absorptivity at this wavelength. The second important 

property of lead is its ability to be sorbed to anion exchange 

resins from low concentrations of hydrochloric acid and eluted 

at higher concentrations. Only silver(I] and rhodium(III) 

share this property. The dual selectivity of sorption at 

0.5M HCl, desorption at 8.0M HCl and monitoring at or around 

272 nm makes this a nearly specific method for lead. 

Choice of Resin. Four resins were compared for efficien­

cy of separation by determining the HETP for a 42-ul sample 
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Figure 13. Spectra of 10 yg Pb(II)/ml in hydrochloric acid 
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containing 0.1 ymole of lead(II) at various flow rates of 1. OM 

HCl. These data are shown in Figure 14. This concentration 

of acid was chosen to ensure an accurately measurable reten­

tion volume on the four resins employed and to provide suffi­

cient absorbance for detection. The resins were all ground 

and sieved water moist in the chloride form to ensure uniform­

ity in particle size in making this comparison. As is indi­

cated in Figure 14, Dowex 1-X8 displayed the lowest HETP 

values at any given flow rate. Also, the resulting linear 

plot of HETP versus flow rate exhibited the smallest slope, 

making this the resin of choice at high flow velocities. In 

general the peak shapes observed were more symmetrical for 

Dowex 1-X8 than for the other resins. The volume distribution 

ratios for lead in l.OM HCl on Dowex 1-X8, IRA-400, IRA-900, 

and A-26 were 13.2, 14.8, 12.4, and 10.2, respectively. 

Choice of Conditions. Although maximum retention of lead 

on Dowex 1-X8 is obtained at 1.3M HCl, 0.5M HCl was chosen as 

the sorbing eluent to obtain greater resolution from ions par­

titioning at low acid concentrations. Figure 15 shows the 

distribution ratios of four metals likely to interfere with 

this method. These values were obtained from column retention 

volumes, assuming 70% packing efficiency. Although antimony 

(V) and rhodium(III] are also likely to cause interference, 

suitable retention values could not be obtained at low acid 

concentrations. Inspection of these data show that a sépara-
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tion factor of about 10 can be achieved for molybdenum(VI] at 

0.5M HCl, and an even greater separation factor for all other 

ions (with exception of rhodium(III)). Lead, however, is 

still retained at this concentration. The choice of eluent 

for removal of lead from the column was dictated by the need 

for resolving the peak maximum from the solvent change signal 

which is shown with a typical elution curve in Figure 16. 

Although higher hydrochloric acid concentrations would remove 

lead more rapidly, 8M HCl was chosen to allow a base line of 

zero under the peak maximum. 

Column length was a compromise between time, resolution 

and sensitivity. The 7.25-cm column employed allows rapid 

separation from moderate amounts of molybdenum and other ele­

ments at flow rates up to 3.0 ml/min. For greater resolution 

from slightly partitioning elements, slower flow rates or 

increased column length can be employed. The flow rate of 3.0 

ml/min corresponds to an elution sequence of 8 min from injec­

tion to injection. The sequence for this column varies from 

17 min at a flow rate of 0.5M HCl of 1 ml/min to 5 min at 5 

ml/min. This corresponds to a 44% decrease in detector 

response at the elution maximum. As both peak area and peak 

height are a function of flow rate, it must be carefully con­

trolled for best results. 

The choice of sample loop size was again a compromise. 

Larger loop sizes can be used for greater sensitivity, however, 

unless the column length is greatly increased separation from 
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Figure 16. Typical chromatogram of lead analysis 

Conditions: Sample, NBS 37d 163 mg/100 ml; sample volume, 
0.969 ml; flow rate of 0.5M HCl, 3.0 ml/min; detection at 
2 70 nm 
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interfering ions is not possible. For example, if the sample 

volume is increased to 10 ml, resolution of iron and lead can 

barely be achieved on a 17-cm column at 2.0 ml/min, although 

the separation factor for lead/iron in 0.5M HCl is nearly 80. 

Since the sample loop volume is only approximately pro­

portional to the length of tubing installed, unit volumes are 

not easily obtained. The dimension of the 0.969 ml loop re­

ported has no special significance. 

Accuracy and Precision. Data on accuracy and precision 

in the analysis of standard reference materials are given in 

Table II. These data were obtained using a single injection 

of each of three weighings. The calibration curve was con­

structed from a single injection of each of three standard 

solutions run alternately with the samples. A linear least 

squares data fit was used to obtain the lead content of the 

unknowns using a programmable calculator. Graphical methods 

yielded the same results. As spectrophotometric detection is 

employed using no attenuation, precision depends on sample 

concentration. Concentrations from 0.4 to 40 yg Pb/ml can be 

detected corresponding to absorbance values of 0.01 and 1.0 or 

1 % and 100% of the recorder scale. Optimum results were 

obtained from 10 to 30 yg Pb/ml or in an absorbance range of 

from 0.222 to 0.647. The relative standard deviation on a 

single weighing of NBS 124d at the center of this range was 

0.23 pph. 

A variety of pottery pieces were analyzed for extractable 
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Sample type 

Lead-base 
bearing metal 

Ounce metal 

Sheet brass 

T in-base 
bearing metal 

Manganese 
bronze 

43 

Analysis of NBS 

NBS NBS 
No. analysis 

53B 84.4% 

124d 5.20% 

37D 0.94% 

54D 0.62% 

62B 0 . 2 8 %  

Samples for Lead 

Our Mean 
analysis error 

85.0% +0.7% 

5.18% -0.4% 

0.95% +1.1% 

0.61% -1.6% 

0 . 2 8 %  0 %  

Rel std 
dev, pph 

1.34 

0.95 

1.05 

1.64 

0 . 0 
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lead. Lead was detected in the leaching solutions from two of 

the twelve units at levels of 0.4 and 1.4 yg Pb/ml. Standards 

were treated using the procedure described and a relative 

standard deviation of 1.6 pph was obtained at 7 yg/ml. 

There are two kinds of interference common to this type 

of analysis. Column overloading can cause alteration of peak 

shape and retention time and hence a dependency of peak height 

on matrix composition. However, even in the analysis of tin-

base bearing metal, where the tin matrix is tightly sorbed to 

the column while present in a 143 to 1 ratio to lead, no inter­

ference was noted. This was due to the small fraction of the 

column capacity occupied by the tin even after repeated anal­

yses . 

The other type of interference is due to ions that are 

retained in 0.5M HCl stripped in 8,OM HCl and absorb at 270 

nm. Of the cations tested only three were found to interfere. 

Rhodium(111), antimony(V) and molybdenum(VI) were found to 

cause a 1% error in the analysis with metal/lead ratios of 

0.009, 0.181, and 5.30 respectively. Greater resolution from 

molybdenum can be achieved as previously mentioned. Antimony 

can be removed during sample dissolution by volatilization. 

Rhodium(III) can be oxidized to the tetravalent state which 

will not be eluted with lead. 

Nitrate ion can also cause error and should be driven off 

by taking the sample to dryness in concentrated hydrochloric 

acid prior to analysis. 
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DETERMINATION OF METALS IN MIXED HYDROCHLORIC 

AND PERCHLORIC ACIDS 

Although hydrochloric acid has proven the most useful 

medium for separation of heavy metals, strong adsorption of a 

few metals which resist rapid elution at any acid concentra­

tion is a serious limitation to use of this system. Mixtures 

of hydrochloric and hydrofluoric acids have been employed to 

elute sequentially some of these elements (12). However, 

there remains a need for a more versatile separation medium 

that is chemically compatible with the hydrochloric acid 

system. 

This section describes a new solvent system, a gradient 

mixture of lOM HCl and 5M HCIO^. This not only enables elu­

tion of metals strongly retained on chloride-form anion ex­

change resins but also makes possible several useful separa­

tions of these ions. in addition it enables detection of these 

elements via the ultraviolet absorption of their chloride com­

plexes. Quantitative analysis of a multicomponent sample is 

illustrated. 

Experimental 

Apparatus. The chromatograph was as previously described. 

Resin. Amberlyst A-26 macroreticular strong-base anion 

exchange resin was obtained from Rohm and Haas Company. In 

the chloride form the capacity is about 4.1-4.4 meq/gram dry 

or 0.95-1.1 meq/ml. 
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The resin was washed in dilute hydrochloric acid, concen­

trated hydrochloric acid, methanol, and water prior to grind­

ing water moist with mortar and pestle. The resin was sieved 

before drying and the 150-200 mesh fraction retained. Extreme 

fines were removed by methanol flotation. 

Before weighing, the resin used in column separations was 

rinsed with acetone, air dried, and finally dried under vacuum 

over anhydrous calcium sulfate for 24 hr. 

For batch distribution studies a portion of the resin, 

prepared as described, was placed in a column and washed with 

5M perchloric acid until the effluent was optically trans­

parent in the ultraviolet. This serves to leach organic im­

purities as well as effect complete conversion to the per-

chlorate form. The resin, after washing with deionized water 

until the column effluent reached pH 6, was air dried before 

weighing. 

Reagents. Except for platinumflV) prepared from the 

metal, all metal ion solutions were prepared by dissolving 

reagent grade oxides or chlorides in either 6M HCl or a mix­

ture of 0.2M HC1-4.9M HCIO^. From these stock solutions dilu­

tions were made adding 70% perchloric acid, concentrated 

hydrochloric acid, and distilled, deionized water in appropri­

ate amounts to match the eluent and sample compositions. 

Chromium(VI) was first dissolved in dilute perchloric acid or 

water. Hydrochloric acid was added immediately before injec­

tion to prevent reduction to chromiumCIII)• Ruthenium(IV) was 
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prepared by storing a solution of the commercial "Trichloride" 

in 6M riCl under air for a year. After dilution, ruthenium(IV) 

and tin(IV] were allowed to stand 10 hours prior to injection. 

For column retention studies the metal concentrations in the 

injected solutions ranged from 100 )jg/ml to 0.1 ug/ml depend­

ing upon sensitivity of detection. For the analytical separa­

tions concentrations from 40-10,000 pg/ml were employed. 

For batch equilibrations mercuric oxide was dissolved in 

measured amounts of perchloric or perchloric and hydrochloric 

acids. The acidity was then adjusted by addition of sodium 

hydroxide and diluted to volume. The mercury(I I) concentra­

tion was 0.0200M. 

Column Preparation. In changing from the chloride to the 

perchlorate form strong-base anion exchange resins shrink 

markedly (37) . To prevent continual change of column length 

and bed density when changing eluents, a special packing pro­

cedure is used. A Chromatronix LC-6M-13 column (6.35 mm i.d.) 

is packed in a vertical position with one of two outlet plung­

ers in place. A thick aqueous slurry of chloride-form resin 

is added and allowed to settle while maintaining a constant 

flow by applying suction at the column outlet. The other 

plunger is inserted and the column compressed. The column is 

then installed in the chromatograph and treated with water, 

3M HCIO^, water, 3M HCl and water in 10 ml portions. The 

column is then reversed, both ends compressed, and the pro­

cedure repeated. This is continued for 10-15 cycles or until 
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the bed no longer pulls away from the inlet plunger after con­

version to the perchlorate form. This procedure was employed 

for the 9.15-cm, 3.80-cm, and 1.85-cm columns employed con­

taining 1.072 g, 0.400 g and 0.241 g dry chloride-form resin, 

respectively. Shrinkage data for the 9.15-cm (final length) 

column are shown in Figure 17. 

Distribution Ratios. Distribution ratios of metal ions 

with A-26 resin were determined from recorded column elution 

curves. The detector was set at 225 nm and the flow rate was 

adjusted to between 0.5 and 1.0 ml/min for the 9.15-cm column 

or from 1.0 to 2.0 ml/min for the 1.85-cm column. The sample 

was injected using a 50-^1 sample loop and the elution curve 

(in absorbance) recorded. Nickel(II) was used as the refer­

ence ion because it has a retention volume of zero at all con­

centrations but has UV absorption sufficient for detection. 

The weight distribution ratio is then calculated: 

g ^ (Retention Volume Metal Ion)-(Retention Volume Nickel) 

^ (Weight of Resin in Column) 

Using the graduated eluent collector and event marker, 

direct calibration of the recorded peak is possible in 100-pl 

divisions allowing estimation of retention volumes to +_ 20 nl. 

-  7  7  
Distribution ratios from 10 to 10 can be determined using 

the 9.15-cm column, but best results were obtained for values 

from 0.1 to 10. To shorten the time required to elute 

strongly sorbed ions, the 1.85-cm column was used to determine 
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approximate values for distribution ratios greater than 50. 

Weight distribution ratios for mercury(II) were deter­

mined after batch equilibration of 10 ml of solution with 

1.000 g of resin for 1 hr. 

A 5-ml aliquot of the aqueous phase was made to pH 6 with 

sodium hydroxide and sodium acetate, excess EDTA was added, 

and mercury(11) determined by back titration with zinc(II) 

using NAS as the indicator (38). 

Separations. All separations were monitored at 225 nm. 

The 50-yl sample loop was used. Separation of nickel(I I), 

palladium(11) , and platinum(IV) and separation of arsenic(III) , 

antimony(111) and bismuth(III) were accomplished on the 9.15-

cm column with an initial flow rate of 1.0 ml/min. The 3.80-

cm column with a flow rate of 0.86 ml/min was used to separate 

lead(II) , copper(II), iron(III) , mercury(II) and tin(IV). 

The pressure is adjusted to yield the appropriate flow 

rate and the sample is injected. Eluents are changed in a 

time sequence, compensating for the volume between eluent 

manifold and detector. 

Results 

Distribution ratios for metal ions in hydrochloric acid-

perchloric acid mixtures are given in Table III. The distribu­

tion ratio for several metal ions decreases in regular fashion 

with increasing perchloric and decreasing hydrochloric acid 

concentrations. The curves for some of the metal ions pass 
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T a b l e  I I I .  A n i o n  E x c h a n g e  W e i g h t  D i s t r i b u t i o n  R a t i o s  i n  a  G r a d i e n t  M i x t u r e  o f  

l O M H C l  a n d  5 M H C 1 0 .  
—  —  4  

r H C l l ,  Th CIO^ ^  S b ( i n )  B i ( I I I )  C r ( V I )  A u ( I I I )  H g ( I I )  P d ( I I )  P t ( I V )  R u ( I V )  T l ( I I I )  S n ( I V )  

1 0 .  O M ,  0 .  O M  ~ 7  1  ~ 9 3  I. 6 6  > 2 5 0  ~ 1 5 0  -  5 6  > 1 6 6  3.82 >200 > 2 0 0  

9 . 0 M ,  0 .  5  M  2 1 . 6  1 8 .  6  0 .  6 1  > 2 5 0  3 4 .  4  12.2 >  16 6  1.  6 8  ~  8 3  >200 

8 . 0 M ,  1. O M  11. 0  6 .  4 4  0 .  2 9  > 2 5 0  1 7 . 2  5 .  2 4  - 96 0 . 9 0  - 69 > 2 0 0  

7 .  O M ,  1 .  5  M  7 .  2 3  3 .  1 4  0 .  2 5  > 2 5 0  9 . 7 9  3 .  0 5  ~  4 0  0 .  4 7  ~  6 7  > 2 0 0  

6 .  O M ,  2 .  O M  5 .  6 8  1 . 9 5  0 .  2 0  > 2 5 0  6.92 2 .  1 4  4 1 . 0  0 .  3 4  ~  7 5  - 2 0 0  

B . O M ,  2 .  5 M  4 .  5 0  1 .  1 7  0 .  2 0  > 2 5 0  4.36 1 . 4 1  24.3 0 .  1 9  ~  6  5  — 1 1 0  

4 . 0 M ,  3 .  O M  4 .  3 8  0 . 8 7  0 .  2 3  > 2 5 0  3 .  5 4  1 .  1 2  1 7 . 9  0 .  11 - 62 —  6 7  

3 . 0 M ,  3 .  5 M  4 .  5 4  0.72 0 .  2 1  > 2 5 0  2.89 0 .  8 5  1 3 . 0  ~  0  -  6 0  —  4 7  

2 .  O M ,  4 .  O M  5 ,  4 2  0 . 6 0  0 .  2 3  >250 2 .  4 3  0 . 7 4  1 1 .  1  -  0  rs, 97 4 7 . 6  

1 .  O M ,  4 .  5 M  8 .  3 0  0 .  5 3  0 .  1 5  ~ 2 0 0  1 . 9 2  0 .  6 2  9 . 0 1  ~  0  - 1 5 0  29. 3 

0 . 6 M ,  4 .  7 M  1 1 .  1  0 . 7 2  0 .  1 7  ~200 1 . 9 4  0 .  4 5  7.85 -  1 7 0  22. 4 

0 . 2 M ,  4 .  9  M  1 6 .  3  1 . 8 8  0 .  0 2  -200 2.28 0 .  3 5  7 .  1 0  -  1  1 0  1 3 .  2  

0 .  O M ,  5 .  O M  3 .  6 4  7 . 8 1  0 .  0 2  - 1 9 0  4 . 3 1  0 .  5 6  7 .  1 2  -  1 7 0  1 . 6 6  
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through minima, as illustrated by mercury(II), antimony(111), 

bismuth(III) and thallium(III) in Figure 18. With the excep­

tion of gold(III) and thallium(III) , incorporation of per­

chloric acid in the eluent lowers the distribution ratios of 

all metal ions studied sufficiently to permit their elution 

from an anion exchange column. 

Examination of Table III shows sufficient differences in 

distribution ratios in the hydrochloric-perchloric acid system 

to permit a number of column separations of metal ion mixtures. 

Also, conventional anion exchange separations based on varia­

tion in hydrochloric acid concentration alone are still pos­

sible. In either system many metal ions form chloride com­

plexes which absorb strongly in the UV, thus automatic detec­

tion and recording of eluted metal peaks is feasible. The 

separations described below were carried out to demonstrate 

the utility and rapidity of anion exchange separations using 

the hydrochloric-perchloric acid system using a forced-flow-

liquid chromatograph. 

The separation of arsenic(III), antimony(III) and bismuth 

(III) was carried out and automatically recorded, as shown in 

Figure 19. Arsenic(III) is eluted with 4M hydrochloric acid 

and the other two metal ions are strongly retained by the 

column. Upon switching to IM HC1-4.5M HCIO^, bismuth (D^ = 

0.55) is rapidly eluted and is separated from the following 

elution peak for antimony (D^. = 8.30). The negative peak and 
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Figure 18. Distribution ratios for ions displaying minima 
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gure 19. Separation of 50 yg arsenic(111), 2.5 yg bismuth 
(III) , and 250 yg antimony(III) 

Conditions: Resin, Amberlyst A-26; column, 9.15 
cm X 0.63 cm i.d.; sample volume, 50 yl; flow rate 
of 4M HCl, 1.0 ml/min; detection wavelength, 
22 5 nm 
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the following positive peak in the baseline curve result from 

the change in eluent. 

The separation of nickel( H ) ,  palladium(II) and plati­

num (IV) is shown in Figure 20. Although nickel(11) is sepa­

rated from the other two by elution with 6M hydrochloric acid 

alone, palladium(II) and platinum(IV) must be separated from 

each other using the hydrochloric-perchloric acid system. 

Again, a baseline peak is observed which results from a change 

in eluent composition. 

More complicated separations can be achieved, as illus­

trated by the separation of five elements recorded in Figure 

21. Here, lead(II) is eluted with 8M hydrochloric acid and 

the other elements are held by the column. Before the lead 

(II) is completely eluted, the eluent is changed to 4M HCl to 

complete elution of the lead and to elute copper(II). Iron 

(III) is eluted with IM HCl, mercury(II) with 4M HC1-3M HCIO^, 

and finally tin(IV) is removed from the column with 0.IM HCl-

5.95M HCIO^. The entire separation is complete in only 25 min. 

Although the separations cited are complete, quantitative 

analysis of mixtures also depends on the ability to relate 

reproducibly peak height (or peak area) to the amount of a 

particular metal. Figure 22 shows calibration curves for four 

of the five metal ions separated in Figure 21. For mixtures 

of this type it is necessary to separate the detector response 

from UV absorption of the eluted ion from the response caused 

by a change in eluent composition. In Figure 21 the sharp 
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Figure 21. Separation of 70 yg leadCH), 17.5 yg copper(II), 
3.5 yg iron(III) , 3.5 yg mercury(11), and 105 yg 
tin(IV) 
Conditions: Resin, Amberlyst A-26; column, 3.80 
cm X 0.63 cm i.d.; sample volume, 50 yl; flow 
rate of 8M HCl, 0.86 ml/min; detection wavelength, 
225 nm 
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Figure 22. Calibration plots for four metals of a five metal mixture 
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baseline peak precludes quantitative determination of iron 

(III). The baseline peak near mercury(II) causes no diffi­

culty provided peak height, rather than peak area, is used 

for the quantitation. Similarly, the baseline solvent peaks 

do not interfere at all with the lead, copper, or tin peaks. 

The calibration plots in Figure 22 were prepared by sepa­

rating successive dilutions of two solutions containing varied 

proportions of these five metal ions. These plots are linear 

except for lead(II]. A curved plot is common for metals that 

are not taken up by the resin under the sample injection con­

ditions. Lead(11) has a linear calibration curve if it is 

first sorbed at 0.5M hydrochloric acid and later stripped with 

8M acid (39). 

The sensitivity of detection varies because of differ­

ences in molar absorptivity of various metal complexes and 

because a fixed-wavelength (225 nm) is used for all elements. 

The sensitivity may be diminished in some cases where a base­

line solvent peak coincides with a metal peak and elution 

conditions must be altered to effect resolution of the two. 

However, the strong adsorption of some of these ions from 

hydrochloric acid allows concentration from large volumes on 

the column prior to desorption in a tight band. Together with 

selective elution in mixed hydrochloric and perchloric acids, 

this provides for the rapid and selective trace determination 

of a number of heavy metal ions. 
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Discussion 

Curiosity regarding the minima in several distribution 

ratio curves (Figure 18) led to a series of additional experi­

ments with mercury(II), reported in Table IV. Several things 

can be deduced from these data. First, mercury(II) does not 

partition appreciably in perchloric acid alone, suggesting 

that chloride is present in the extracted complex(es). Second, 

increasing hydrogen ion concentration at constant ionic 

strength impedes the extraction, suggesting formation of un -

dissociated chloroacids (40). Third, as perchlorate decreases, 

holding pH and chloride ion concentration constant, the distri­

bution ratio increases. This indicates that perchlorate is 

not present in the partitioning species and/or that this is at 

least in part an anion exchange phenomenon rather than sorption 

of a neutral complex. Examination of the distribution data for 

lOM HC1-5M HCIO^ to a minimum at IM KC1-4.5M HClO^. This is 

followed by a sharp rise in distribution ratio at gradient 

compositions lower in chloride content. Calculations based on 

the successive formation constants of mercury(II) chloro-

complexes indicate this minimum coincides with a sharp drop in 

2 -
the relative abundance of HgCl^ , predominant at higher chlo­

ride concentrations, and a corresponding increase in the pro­

portions of both HgClI and HgCl, (41). Data reported for anion 

exchange adsorption of mercury(II) from hydrochloric acid alone 
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Table IV. Anion Exchange Weight Distribution Ratios for 
Mercury(II) 

. +  ,  - ,  r . ,  +  
[H ] [CIO4 ] [.N'a ] [Cl ] Dw 

pH 1 0.9M 0..9M O.IM 22.4 

pH 1 4.9M 4.9M O.IM 14.5 

IM IM - - — <0.5 

5M 5M — — <0.5 

5M 4.9M -- O.IM 9.7 5 
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also indicate a maximum at very low acid concentrations with 

the distribution ratio diminishing as acid concentration 

increases. 

This evidence seems to indicate preferential uptake of 

HgClj and possibly HgCl2 by the perchlorate form of the ex­

changer, at low chloride concentrations. As chloride concen-

2 -
tration increases KgCl^ and HHgCl^ are formed in the aqueous 

phase but compete poorly with perchlorate for the exchange 

sites, thus the adsorption minimum. Finally, at very high 

concentrations of chloride, where a large fraction of the 

resin is in the chloride form, these tetrachloro species are 

strongly taken up. 

The distribution ratios of ruthenium(IV) and chromium(VI) 

in Table III were much less than expected based on previous 

data (5,42). Because ruthenium(III) and chromium(III) should 

be less strongly sorbed, spectral studies were conducted to 

confirm the oxidation states of the metals studied. Trace 

amounts of chromic acid were dissolved in 5M HC1-2.5M HCIO^ 

and in 5M HCIO^ and spectra run immediately. In both cases 

the spectra indicate formation of a mixture of HCrO^ and 

H^CrO^. On standing for 10 hr the spectrum in perchloric acid 

remains unchanged whereas in the acid mixture almost complete 

conversion to chromium(III) has occurred with only minor 

amounts of chromium(VI) remaining, presumably containing 

CrOjCl" (43). 
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The spectrum of ruthenium(IV] was run after diluting the 

stock solution in lOM HCl. The spectrum obtained was the same 

as obtained by Wehner and Hindman, indicating that the sola-

tion contains a mixture of RuC0H)2Cl^ and at least one other 

complex of tetravalent ruthenium. The presence of trivalent 

ruthenium is therefore doubtful especially due to the ability 

of this ion to reduce perchlorate or dissolved oxygen (44). 

Bearing in mind the procedure employed in preparation of these 

ions, there can be no ambiguity about oxidation state. Par­

tial oxidation of the resin, forming chromium[III), must be 

also ruled out because of the large molar absorptivity of the 

eluted peak and absence of separated peaks for chromium(III) 

and chromium(VI) in lOM HCl. It must be concluded that at 

least one detectable complex of these two ions is poorly 

sorbed to this resin. 
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CONCLUSION 

It is clear from the data presented that forced-flow 

anion exchange chromatography is a useful tool in the rapid 

and selective analysis of a variety of heavy metals in hydro­

chloric acid. Separation time has been reduced to five min­

utes per element or less. Continuous spectrophotometrie 

monitoring of column effluents enables simultaneous quantita­

tion of separated ions. This results in at least a 20-fold 

decrease in analysis time. Exceptional selectivity is ob­

tained for some ions. To interfere an ion must be adsorbed 

and desorbed in the same eluent concentrations as the metal 

to be determined. Also, it must absorb at the same detection 

wavelength. Careful selection of elution conditions and 

detection wavelength can eliminate most interferences. With 

careful control of flow rate and elution time, reproducibility 

rivals or surpasses that obtained in most instrumental methods 

for the analysis of small amounts of metal in complex matrices. 

Calibration plots for the same column are valid indefinitely. 

Reproducibility of peak height from a single weighing greatly 

surpasses that between weighings. Because error is random, 

accuracy is limited by sample preparation and not by instru­

mental instability. Yet, accuracy on triplicate weighings of 

NBS standard samples is better than + 2%. Because of the 

ability to concentrate from large sample volumes before elu­

tion, sensitivity is a function of sample volume. Quantita­
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tive determination of many metals is possible at the microgram 

level (peak height greater than 0.01 absorbance unit). Detec­

tion limits in the sub-nanogram range should be possible with 

proper attenuation. Finally, the cost of construction and 

operation is small even when compared with noninstrumental 

methods of analysis. Construction of a similar chromatograph 

that incorporates programmable wavelength and signal attenua­

tion is estimated at $4,500. Helium expenditure is small with 

one tank (2800 ft^) often lasting a month with continuous 

operation. 

This technique has been demonstrated to be applicable to 

a range of sample sizes and matrix compositions. Along with 

the value of this technique in analysis for single elements, 

the ability to analyze exhaustively a mixture of metals has 

been demonstrated. Applications to trace metal analysis in 

water, body fluids, and foods seem promising. The complete 

analysis of brass and similar alloys is also possible. 
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FUTURE WORK 

Although forced-flow liquid chromatography has been demon­

strated to be useful in separation and detection of metals by 

anion exchange in hydrochloric acid, the utility of this tech­

nique is not limited to this system. The ability to act as 

both eluent and spectrophotometrie reagent is not peculiar to 

hydrochloric acid. The use of eluents containing thiocyanate, 

cyanide, bromide, or iodide should also provide many rapid and 

selective methods for metal ions on both anion and cation 

exchange resins. Nor is this technique limited to eluents 

that form light absorbing complexes; Sickafoose has demon­

strated that a number of metals can be determined by mixing a 

color forming reagent and buffer with the column effluent (45). 

The use of ion exchange is not even necessary. More recent 

work by Goodkin has shown that heavy metals can be separated 

and determined on a resin with no ionic sites using this 

technique (46). It is clear, therefore, that this technique 

has great potential much of which is yet to be realized. Con­

tinued research in column chemistry, including development of 

new resins and more versatile elution media, is justified. 

Of immediate interest in advancement of this technique is 

development of a high pressure eluent delivery system. This 

system must be corrosion resistant and capable of programmed 

eluent composition. Such a system would enable reproducible 

and unattended separation of a large number of metal ions. 
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For example, a delivery system capable of programmed mixing of 

either 5M perchloric acid or water with lOM hydrochloric acid 

would allow concentration and separation of up to 30 different 

elements on a single column of anion exchange resin. This 

development should be accompanied by detector modification to 

include addition of a photomul tiplier and attenuator. This 

should increase sensitivity 100 fold and allow determination 

of some metals at the nanogram level. Such modification will 

also allow determination of metal mixtures with widely varying 

indivi'dual peak heights. 

Finally, there exists a need for development of new de­

tectors. Although UV-visible spectrophotometrie detection has 

proven adequate for many applications, detectors are needed 

with even greater sensitivity, stability and/or selectivity. 

Great advances in inorganic analysis will arise from inter-

methods o f  analysis. Even with methods that display selectiv­

ity in themselves, there is much to be gained from pre-analy-

sis chromatographic sample processing. The sample can be 

first concentrated from a large sample volume followed by 

sequential elution by simply altering eluent composition. The 

identity of the element can be obtained from its retention 

time; its quantity can be determined from the height of the 

recorded peak. Problems with matrix interferences are elimin­

ated. This can only add to the sensitivity, selectivity and 
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like atomic emission spectroscopy, 

and exhaustive coulometry. 
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